前言:我們精心挑選了數篇優質挖掘技術論文文章,供您閱讀參考。期待這些文章能為您帶來啟發,助您在寫作的道路上更上一層樓。
[關鍵詞]數據挖掘數據挖掘方法
隨著信息技術迅速發展,數據庫的規模不斷擴大,產生了大量的數據。但大量的數據往往無法辨別隱藏在其中的能對決策提供支持的信息,而傳統的查詢、報表工具無法滿足挖掘這些信息的需求。因此,需要一種新的數據分析技術處理大量數據,并從中抽取有價值的潛在知識,數據挖掘(DataMining)技術由此應運而生。
一、數據挖掘的定義
數據挖掘是指從數據集合中自動抽取隱藏在數據中的那些有用信息的非平凡過程,這些信息的表現形式為:規則、概念、規律及模式等。它可幫助決策者分析歷史數據及當前數據,并從中發現隱藏的關系和模式,進而預測未來可能發生的行為。數據挖掘的過程也叫知識發現的過程。
二、數據挖掘的方法
1.統計方法。傳統的統計學為數據挖掘提供了許多判別和回歸分析方法,常用的有貝葉斯推理、回歸分析、方差分析等技術。貝葉斯推理是在知道新的信息后修正數據集概率分布的基本工具,處理數據挖掘中的分類問題,回歸分析用來找到一個輸入變量和輸出變量關系的最佳模型,在回歸分析中有用來描述一個變量的變化趨勢和別的變量值的關系的線性回歸,還有用來為某些事件發生的概率建模為預測變量集的對數回歸、統計方法中的方差分析一般用于分析估計回歸直線的性能和自變量對最終回歸的影響,是許多挖掘應用中有力的工具之一。
2.關聯規則。關聯規則是一種簡單,實用的分析規則,它描述了一個事物中某些屬性同時出現的規律和模式,是數據挖掘中最成熟的主要技術之一。關聯規則在數據挖掘領域應用很廣泛適合于在大型數據集中發現數據之間的有意義關系,原因之一是它不受只選擇一個因變量的限制。大多數關聯規則挖掘算法能夠無遺漏發現隱藏在所挖掘數據中的所有關聯關系,但是,并不是所有通過關聯得到的屬性之間的關系都有實際應用價值,要對這些規則要進行有效的評價,篩選有意義的關聯規則。
3.聚類分析。聚類分析是根據所選樣本間關聯的標準將其劃分成幾個組,同組內的樣本具有較高的相似度,不同組的則相異,常用的技術有分裂算法,凝聚算法,劃分聚類和增量聚類。聚類方法適合于探討樣本間的內部關系,從而對樣本結構做出合理的評價,此外,聚類分析還用于對孤立點的檢測。并非由聚類分析算法得到的類對決策都有效,在運用某一個算法之前,一般要先對數據的聚類趨勢進行檢驗。
4.決策樹方法。決策樹學習是一種通過逼近離散值目標函數的方法,通過把實例從根結點排列到某個葉子結點來分類實例,葉子結點即為實例所屬的分類。樹上的每個結點說明了對實例的某個屬性的測試,該結點的每一個后繼分支對應于該屬性的一個可能值,分類實例的方法是從這棵樹的根結點開始,測試這個結點指定的屬性,然后按照給定實例的該屬性值對應的樹枝向下移動。決策樹方法是要應用于數據挖掘的分類方面。
5.神經網絡。神經網絡建立在自學習的數學模型基礎之上,能夠對大量復雜的數據進行分析,并可以完成對人腦或其他計算機來說極為復雜的模式抽取及趨勢分析,神經網絡既可以表現為有指導的學習也可以是無指導聚類,無論哪種,輸入到神經網絡中的值都是數值型的。人工神經元網絡模擬人腦神經元結構,建立三大類多種神經元網絡,具有非線形映射特性、信息的分布存儲、并行處理和全局集體的作用、高度的自學習、自組織和自適應能力的種種優點。
6.遺傳算法。遺傳算法是一種受生物進化啟發的學習方法,通過變異和重組當前己知的最好假設來生成后續的假設。每一步,通過使用目前適應性最高的假設的后代替代群體的某個部分,來更新當前群體的一組假設,來實現各個個體的適應性的提高。遺傳算法由三個基本過程組成:繁殖(選擇)是從一個舊種群(父代)選出生命力強的個體,產生新種群(后代)的過程;交叉〔重組)選擇兩個不同個體〔染色體)的部分(基因)進行交換,形成新個體的過程;變異(突變)是對某些個體的某些基因進行變異的過程。在數據挖掘中,可以被用作評估其他算法的適合度。
7.粗糙集。粗糙集能夠在缺少關于數據先驗知識的情況下,只以考察數據的分類能力為基礎,解決模糊或不確定數據的分析和處理問題。粗糙集用于從數據庫中發現分類規則的基本思想是將數據庫中的屬性分為條件屬性和結論屬性,對數據庫中的元組根據各個屬性不同的屬性值分成相應的子集,然后對條件屬性劃分的子集與結論屬性劃分的子集之間上下近似關系生成判定規則。所有相似對象的集合稱為初等集合,形成知識的基本成分。任何初等集合的并集稱為精確集,否則,一個集合就是粗糙的(不精確的)。每個粗糙集都具有邊界元素,也就是那些既不能確定為集合元素,也不能確定為集合補集元素的元素。粗糙集理論可以應用于數據挖掘中的分類、發現不準確數據或噪聲數據內在的結構聯系。
8.支持向量機。支持向量機(SVM)是在統計學習理論的基礎上發展出來的一種新的機器學習方法。它基于結構風險最小化原則上的,盡量提高學習機的泛化能力,具有良好的推廣性能和較好的分類精確性,能有效的解決過學習問題,現已成為訓練多層感知器、RBF神經網絡和多項式神經元網絡的替代性方法。另外,支持向量機算法是一個凸優化問題,局部最優解一定是全局最優解,這些特點都是包括神經元網絡在內的其他算法所不能及的。支持向量機可以應用于數據挖掘的分類、回歸、對未知事物的探索等方面。
事實上,任何一種挖掘工具往往是根據具體問題來選擇合適挖掘方法,很難說哪種方法好,那種方法劣,而是視具體問題而定。
三、結束語
目前,數據挖掘技術雖然得到了一定程度的應用,并取得了顯著成效,但仍存在著許多尚未解決的問題。隨著人們對數據挖掘技術的深人研究,數據挖掘技術必將在更加廣泛的領域得到應用,并取得更加顯著的效果。
關鍵詞:挖掘機;維修;保養
隨著科技的進步,現代挖掘機一般都采用了機電液一體化控制模式,我們在排除一些故障時,解決的多是發動機、液壓泵、分配閥、外部負荷的匹配問題。一般在挖掘機作業中,這幾方面不能匹配,經常會表現為:發動機轉速下降,工作速度變慢,挖掘無力以及一些常見問題。
一、發動機轉速下降
首先要測試發動機本身輸出功率,如果發動機輸出功率低于額定功率,則產生故障的原因可能是燃油品質差、燃油壓力低、氣門間隙不對、發動機的某缸不工作、噴油定時有錯、燃油量的調定值不對、進氣系統漏氣、制動器及其操縱桿有毛病和渦輪增壓器積炭。如果發動機輸出動力正常,就需要查看是否因為液壓泵的流量和發動機的輸出功率不匹配。
液壓挖掘機在作業中速度與負載是成反比的,就是流量和泵的輸出壓力乘積是一個不變量,泵的輸出功率恒定或近似恒定。如果泵控制系統出現了故障,就不能實現發動機、泵及閥在不同工況區域負荷優化匹配狀態,挖掘機從而將不能正常工作。此類故障要先從電器系統入手,再檢查液壓系統,最后檢查機械傳動系統。
二、工作速度變慢
挖掘機工作速度變慢主要原因是整機各部磨損造成發動機功率下降與液壓系統內泄。挖掘機的液壓泵為柱塞變量泵,工作一定時間后,泵內部液壓元件(缸體、柱塞、配流盤、九孔板、龜背等)不可避免的產生過度磨損,會造成內漏,各參數據不協調,從而導致流量不足油溫過高,工作速度緩慢。這時就需要整機大修,對磨損超限的零部件進行修復更換。
但若不是工作時間很長的挖掘機突然變慢,就需要檢查以下幾方面。先查電路保險絲是否斷路或短路,再查先導壓力是否正常,再看看伺服控制閥-伺服活塞是否卡死以及分配器合流是否故障等,最后將液壓泵拆卸進行數據測量,確認挖機問題所在。
三、挖掘機無力
挖掘無力是挖掘機典型故障之一。對于挖掘無力可分為兩種情況:一種為挖掘無力,發動機不憋車,感覺負荷很輕;第二種為挖掘無力,當動臂或斗桿伸到底時,發動機嚴重憋車,甚至熄火。
①挖掘無力但發動機不憋車。挖掘力的大小由主泵輸出壓力決定,發動機是否憋車取決于油泵吸收轉矩與發動機輸出轉矩間的關系。發動機不憋車說明油泵吸收轉矩較小,發動機負荷輕。如果挖掘機的工作速度沒有明顯異常,則應重點檢查主泵的最大輸出壓力即系統溢流壓力。如果溢流壓力測量值低于規定值,表明該機構液壓回路的過載溢流閥設定值不正確,導致該機構過早溢流,工作無力。則可以通過轉動調整螺絲來調整機器。②挖掘無力,發動機憋車。發動機憋車表明油泵的吸收轉矩大于發動機輸出轉矩,致使發動機超載。這種故障應首先檢查發動機速度傳感系統是否正常,檢查方法與前文所述發動機檢查方法類似。經過以上細致的檢查與排除故障,發動機速度傳感系統恢復正常功能,發動機憋車現象消失,挖掘力就會恢復正常。
四、挖掘作業過程中的常見故障
挖掘機在施工作業中經常出現的一些普遍的故障,如:挖機行走跑偏,原因可能為行走分配油封(又稱中心回轉接頭油封)損壞;兩個液壓泵流量大小不一;一邊行走馬達有問題。液壓缸快速下泄則可能為安全溢流閥封閉不嚴,或缸油封嚴重損壞等等。
五、挖掘機的日常保養
為了防止挖掘機的故障發生,在日常使用過程中需要十分注意對挖掘機的保養。日常保養包括檢查、清洗或更換空氣濾芯;清洗冷卻系統內部;檢查和擰緊履帶板螺栓;檢查和調節履帶反張緊度;檢查進氣加熱器;更換斗齒;調節鏟斗間隙;檢查前窗清洗液液面;檢查、調節空調;清洗駕駛室內地板;更換破碎器濾芯(選配件)。清洗冷卻系統內部時,待發動機充分冷卻后,緩慢擰松注水口蓋,釋放水箱內部壓力,然后才能放水;不要在發動機工作時進行清洗工作,高速旋轉的風扇會造成危險;當清潔或更換冷卻液時,應將機器停放在水平地面上。
同時在啟動發動機前需要檢查冷卻液的液面位置高度(加水);檢查發動機機油油位,加機油;檢查燃油油位(加燃油);檢查液壓油油位(加液壓油);檢查空氣濾芯是否堵塞;檢查電線;檢查喇叭是否正常;檢查鏟斗的;檢查油水分離器中的水和沉淀物。
挖掘機在日常工作中遇到的故障還有很多,這里只是介紹了較為常見的幾類故障的維修方法,并且為了減少故障的發生,對挖掘機的日常保養是很重要的。只有做到保養和維護的雙重保障,才能保障挖掘機更好的正常工作。
參考文獻:
[1]鐘陳添.挖掘機液壓系統的常見故障分析及排除.科技資訊,2007,(22).
[關鍵詞]數據挖掘數據挖掘方法
隨著信息技術迅速發展,數據庫的規模不斷擴大,產生了大量的數據。但大量的數據往往無法辨別隱藏在其中的能對決策提供支持的信息,而傳統的查詢、報表工具無法滿足挖掘這些信息的需求。因此,需要一種新的數據分析技術處理大量數據,并從中抽取有價值的潛在知識,數據挖掘(DataMining)技術由此應運而生。
一、數據挖掘的定義
數據挖掘是指從數據集合中自動抽取隱藏在數據中的那些有用信息的非平凡過程,這些信息的表現形式為:規則、概念、規律及模式等。它可幫助決策者分析歷史數據及當前數據,并從中發現隱藏的關系和模式,進而預測未來可能發生的行為。數據挖掘的過程也叫知識發現的過程。
二、數據挖掘的方法
1.統計方法。傳統的統計學為數據挖掘提供了許多判別和回歸分析方法,常用的有貝葉斯推理、回歸分析、方差分析等技術。貝葉斯推理是在知道新的信息后修正數據集概率分布的基本工具,處理數據挖掘中的分類問題,回歸分析用來找到一個輸入變量和輸出變量關系的最佳模型,在回歸分析中有用來描述一個變量的變化趨勢和別的變量值的關系的線性回歸,還有用來為某些事件發生的概率建模為預測變量集的對數回歸、統計方法中的方差分析一般用于分析估計回歸直線的性能和自變量對最終回歸的影響,是許多挖掘應用中有力的工具之一。
2.關聯規則。關聯規則是一種簡單,實用的分析規則,它描述了一個事物中某些屬性同時出現的規律和模式,是數據挖掘中最成熟的主要技術之一。關聯規則在數據挖掘領域應用很廣泛適合于在大型數據集中發現數據之間的有意義關系,原因之一是它不受只選擇一個因變量的限制。大多數關聯規則挖掘算法能夠無遺漏發現隱藏在所挖掘數據中的所有關聯關系,但是,并不是所有通過關聯得到的屬性之間的關系都有實際應用價值,要對這些規則要進行有效的評價,篩選有意義的關聯規則。
3.聚類分析。聚類分析是根據所選樣本間關聯的標準將其劃分成幾個組,同組內的樣本具有較高的相似度,不同組的則相異,常用的技術有分裂算法,凝聚算法,劃分聚類和增量聚類。聚類方法適合于探討樣本間的內部關系,從而對樣本結構做出合理的評價,此外,聚類分析還用于對孤立點的檢測。并非由聚類分析算法得到的類對決策都有效,在運用某一個算法之前,一般要先對數據的聚類趨勢進行檢驗。
4.決策樹方法。決策樹學習是一種通過逼近離散值目標函數的方法,通過把實例從根結點排列到某個葉子結點來分類實例,葉子結點即為實例所屬的分類。樹上的每個結點說明了對實例的某個屬性的測試,該結點的每一個后繼分支對應于該屬性的一個可能值,分類實例的方法是從這棵樹的根結點開始,測試這個結點指定的屬性,然后按照給定實例的該屬性值對應的樹枝向下移動。決策樹方法是要應用于數據挖掘的分類方面。
5.神經網絡。神經網絡建立在自學習的數學模型基礎之上,能夠對大量復雜的數據進行分析,并可以完成對人腦或其他計算機來說極為復雜的模式抽取及趨勢分析,神經網絡既可以表現為有指導的學習也可以是無指導聚類,無論哪種,輸入到神經網絡中的值都是數值型的。人工神經元網絡模擬人腦神經元結構,建立三大類多種神經元網絡,具有非線形映射特性、信息的分布存儲、并行處理和全局集體的作用、高度的自學習、自組織和自適應能力的種種優點。
6.遺傳算法。遺傳算法是一種受生物進化啟發的學習方法,通過變異和重組當前己知的最好假設來生成后續的假設。每一步,通過使用目前適應性最高的假設的后代替代群體的某個部分,來更新當前群體的一組假設,來實現各個個體的適應性的提高。遺傳算法由三個基本過程組成:繁殖(選擇)是從一個舊種群(父代)選出生命力強的個體,產生新種群(后代)的過程;交叉〔重組)選擇兩個不同個體〔染色體)的部分(基因)進行交換,形成新個體的過程;變異(突變)是對某些個體的某些基因進行變異的過程。在數據挖掘中,可以被用作評估其他算法的適合度。
7.粗糙集。粗糙集能夠在缺少關于數據先驗知識的情況下,只以考察數據的分類能力為基礎,解決模糊或不確定數據的分析和處理問題。粗糙集用于從數據庫中發現分類規則的基本思想是將數據庫中的屬性分為條件屬性和結論屬性,對數據庫中的元組根據各個屬性不同的屬性值分成相應的子集,然后對條件屬性劃分的子集與結論屬性劃分的子集之間上下近似關系生成判定規則。所有相似對象的集合稱為初等集合,形成知識的基本成分。任何初等集合的并集稱為精確集,否則,一個集合就是粗糙的(不精確的)。每個粗糙集都具有邊界元素,也就是那些既不能確定為集合元素,也不能確定為集合補集元素的元素。粗糙集理論可以應用于數據挖掘中的分類、發現不準確數據或噪聲數據內在的結構聯系。
8.支持向量機。支持向量機(SVM)是在統計學習理論的基礎上發展出來的一種新的機器學習方法。它基于結構風險最小化原則上的,盡量提高學習機的泛化能力,具有良好的推廣性能和較好的分類精確性,能有效的解決過學習問題,現已成為訓練多層感知器、RBF神經網絡和多項式神經元網絡的替代性方法。另外,支持向量機算法是一個凸優化問題,局部最優解一定是全局最優解,這些特點都是包括神經元網絡在內的其他算法所不能及的。支持向量機可以應用于數據挖掘的分類、回歸、對未知事物的探索等方面。
事實上,任何一種挖掘工具往往是根據具體問題來選擇合適挖掘方法,很難說哪種方法好,那種方法劣,而是視具體問題而定。
三、結束語
目前,數據挖掘技術雖然得到了一定程度的應用,并取得了顯著成效,但仍存在著許多尚未解決的問題。隨著人們對數據挖掘技術的深人研究,數據挖掘技術必將在更加廣泛的領域得到應用,并取得更加顯著的效果。