本站小編為你精心準備了阻容降壓的穩壓電路設計參考范文,愿這些范文能點燃您思維的火花,激發您的寫作靈感。歡迎深入閱讀并收藏。
隨著科技的發展,計算機技術、數字化技術以及信息技術應用于傳統家電,使家電具備智能化和信息網絡功能,即智能家電,智能家用電器體現了家用電器最新技術面貌。另外,智能家電的節能和環保功能也成為了智能家電發展的一個趨勢。為了實現智能家電的智能功能,就需要用到實現這些功能的專用芯片(ASIC),因此給這些專用集成芯片提供電源,成為一個至關重要的問題。阻容降壓穩壓電源設計簡單,元件少,制造和使用都較可靠,在家電、照明等行業大量應用[1,2]。早期穩壓電源電路包括:降壓變壓器、整流二極管或整流橋、濾波電容及穩壓環節組成[3]。由于其消耗有色金屬,體積大,價格高,安裝不便,為克服這些缺陷,出現了阻容降壓穩壓電路。如圖1所示,阻容降壓穩壓電路節省了大體積的變壓器,因此體積、重量及成本都大大降低。
1阻容降壓穩壓電路的設計與分析
1.1阻容降壓穩壓電路設計本文所設計的阻容降壓穩壓電路如圖2所示,Fuse為保險絲,參數選取為1A/250V,當輸入端流入大電流,保險絲熔斷,從而保護阻容降壓穩壓電路器件不被損壞。壓敏電阻R0選取14D471K,用來防浪涌,能夠起到保護作用;限流電阻R1、泄放電阻R2和限流電容C1構成阻容降壓電路;D1半波整流二極管,D2在市電的負半周時給C1提供放電回路;D3、R6為初級穩壓電路,R3、C2組成濾波電路,R4、Q1、D4構成串聯穩壓電路。
1.2阻容降壓及整流電路原理及分析雖然利用變壓器降壓,可以得到穩定的電壓與較高的效率,由于變壓器包含繞制線圈,會占用很大的空間,在實際布線與安裝時就會造成一定的困難;另一方面,對于企業來說,利用變壓器降壓,成本也會增加;阻容降壓的核心元件是一個電阻和電容并聯,實際上就是利用容抗限流。而電容器起到一個限制電流和動態分配電容器和負載兩端電壓的角色,限流(降壓)電容器C1一定要選擇耐壓高的,通常要大于兩倍的電源電壓,因為當阻容降壓電路空載時,輸出電壓只有三十多伏,市電220V電壓大部分都加到電容C1上。R2為泄放電阻,當正弦波在最大峰值時刻被切斷時,電容C1上殘存電荷無法釋放,會長久存在,如果人體接觸到C1的金屬部分,就會有強烈的觸電可能,而電阻R2的存在,能夠將殘存的電荷泄放掉,從而保證人、機安全。泄放電阻的阻值和電容的大小有關,一般電容的容量越大,殘存的電荷越多,泄放電阻的阻值就要選小一些的。經驗數據如表1所示。D1為半波整流二極管,雖然半波整流效率僅是全波整流的一半,但不推薦使用橋式整流,因為在電路中總希望整個電路只有一個公共參考點即接地點。當采用阻容降壓方式進行交直流轉換時,如果采用橋式整流,在交流端和直流端不可能只有一個公共參考點,當交流端的零線和火線反接時,直流端的參考點可能會帶電,因此這種做法不安全。當采用半波整流時,可以保證交直流端的參考點都接到交流端的零線上,在電路調試時可以保證相對安全一些,這非常重要,因此使用半波整流電路。
1.3穩壓電路分析本文所設計的初級穩壓電路模型如圖3所示,在圖3中,R為限流電阻,rZ為穩壓管的內阻,RL為等效負載。在初級穩壓電路中,利用穩壓管的電流調節作用,通過限流電阻R上電壓或電流的變化進行補償,達到穩壓的目的。為使Sr數值小,需增大R;但在Uo和負載電流確定的情況下,若R的取值大,則Ui的取值也會變大,這樣導致Sr變大。因此初級穩壓電路的Sr值一般在0.01左右,初級穩壓后輸出電壓的紋波系數比較大,因此初級穩壓性能較差。初級穩壓后輸出的紋波系數較大,不能滿足后級芯片輸入電壓的要求,引入串聯穩壓電路,如圖4所示,該電路中引入深度電壓負反饋使輸出電壓穩定,達到輸出電壓Uo在Ui變化或負載電阻RL變化時,輸出電壓基本不變。對于圖4所示的串聯穩壓電路,當電網電壓波動引起Ui增大,或負載電阻RL增大時,輸出電壓Uo將隨著增大,晶體管T發射極電位UE升高;由于穩壓管DZ端電壓保持不變,晶體管T的UBE減小,晶體管基極電流Ib減小,發射極電流Ie也減小,從而使Uo減小;當電網電壓波動引起Ui減小,或負載電阻RL減小時,輸出電壓Uo將隨著減小,晶體管T發射極電位UE降低;由于穩壓管DZ端電壓保持不變,晶體管T的UBE增加,晶體管基極電流Ib增大,發射極電流Ie也增大,從而使Uo增大;因此可以保持輸出電壓Uo保持不變。
2電路仿真和測試
本文采用NI公司的Multisim軟件對阻容降壓的穩壓電路進行設計和仿真。圖5~圖7為整個阻容降壓穩壓電路的瞬態分析仿真結果,瞬態分析掃描時間為1.5s。圖5為市電220V經阻容降壓和半波整流后的輸出電壓仿真波形,可以看出輸出電壓的紋波比較大,交流分量大(即脈動大);并且會隨負載電流的變化發生很大的波動,因此只適用于對脈動要求不高的場合。圖6為初級穩壓輸出的仿真圖,可以看出,經過初級穩壓后,電壓紋波變小,但穩壓系數仍較大,電壓穩定在24V左右,僅能滿足對穩壓性能要求不高的場合。圖7為阻容降壓穩壓電路最終輸出電壓仿真情況,穩壓電路輸出電壓紋波消失,輸出電壓最終穩定在5.0859V,同時該阻容降壓穩壓電路的從上電到穩壓的時間約為241.7062ms,滿足高性能電路的穩壓需要。根據阻容降壓穩壓電路的原理圖2,實際的阻容降壓穩壓電路的測試結果如圖8所示,圖8(a)為電路上電瞬間的輸出波形,由于電路從上電到穩壓的時間很短,所以波形很陡。圖8(b)為最終穩壓電路的輸出電壓,輸出穩壓的平均值為5.04V,最大值為5.12V,最小值為4.96V,與穩壓電路仿真結果5.0859V僅相差0.0459V,因此穩壓性能很好,滿足對輸入電壓為5V專用芯片(ASIC)供電要求。
3結論
本文介紹阻容降壓穩壓電路的基本原理,設計出實用的穩壓電路,通過具體的仿真分析和對實際電路的測試,結果表明該阻容降壓穩壓電路能夠輸出穩定電壓為5.04V;與仿真分析的理想數值僅相差0.0459V,同時,該電路結構簡單,制造成本比較低,工作性能良好,可靠性高,在輸入電壓、負載、環境溫度等參數發生變化時仍能保持輸出電壓恒定,能為ASIC芯片提供穩定電源電壓,目前該阻容降壓穩壓電路已經廣泛應用于具體電子產品中。
作者:翟明靜 徐建剛 劉廣陵 單位:常州工學院 英特曼電工(常州)有限公司